Implementation of QT Algorithm for BBC-Small Tiles and VPD qt32b_l0_v5_3.mcs

Chris Perkins

03/02/2009

Description:

This algorithm forms a 16bit ADC Sum and 12bit TAC Max. Only channels that satisfy a "good hit" requirement are included in the ADC Sum and TAC Max. A "good hit" is defined as one where the ADC value is greater than some threshold and the corresponding TAC value is greater than TAC_MIN and less then TAC_MAX. The channel mask register can be used but note that ADC and TAC channels must each be masked individually.

Inputs:

QT8A: 4 PMT ADC, 4 PMT TAC QT8B: 4 PMT ADC, 4 PMT TAC QT8C: 4 PMT ADC, 4 PMT TAC QT8D: 4 PMT ADC, 4 PMT TAC

Registers (1 Set Per Daughter Card):

Alg. Reg. 0 (Reg 13): ADC_Threshold Alg. Reg. 1 (Reg 14): TAC_MIN Alg. Reg. 2 (Reg 15): TAC_MAX

Reg. 11: Channel Mask

LUT:

Timing adjustments/pedestal subtraction for each PMT

Action (21x RHIC Clock):

- 1st: Mask channels and Latch inputs If mask bit = 1, channel data = 0
- 2nd: For each PMT (4 per daughter board):

ADC above threshold: ADC > PMT_ADC_Thresh → Good_ADC TAC above threshold: TAC > TAC_MIN → Good_TAC_MIN TAC below threshold: TAC < TAC_MAX → Good_TAC_MAX

3rd: Make good_hits(0-3): good_hit(i) = Good-ADC(i) && Good_TAC_MIN(i) && Good_TAC_MAX(i)

- 4th: Sum channels 0+1 subject to good hit requirements → Int_sum_0 Sum channels 2+3 subject to good hit requirements → Int_sum_1 Compare TAC channels 4, 5 subject to good hit requirements → Int_max_0 Compare TAC channels 6, 7 subject to good hit requirements → Int_max_1
- 5th: Sum Int_sum_0 + Int_sum_1 \rightarrow Int_sum_2 Compare Int_max_0, Int_max_1 \rightarrow Int_max_2
- 6th: Sum Int_sum_2 + Sum from previous daughters → ADC_Sum Compare Int_max_2 to TAC Max from previous daughters → TAC_Max
- 7th: Latch Output Bits to next daughter or L0 FPGA

(0-15) : ADC_Sum

(16) : '0'

(17-28): TAC_Max

(29-33): '0'

Algorithm Latch: 1 or 2

L0 Output to DSM:

(0-15) : ADC Sum (16-27) : TAC Max

(28-31) : '0'